- · 《控制理论与应用》栏目[09/01]
- · 《控制理论与应用》刊物[09/01]
- · 《控制理论与应用》征稿[09/01]
- · 《控制理论与应用》投稿[09/01]
- · 《控制理论与应用》数据[09/01]
在宇宙中,弦理论这种“神奇”的理论能告诉我(2)
作者:网站采编关键词:
摘要:此外,科学家知道,类似电子这样的粒子并不仅仅是一个有着表面的微小球体。事实上,它们是有着特定属性的无穷小的能量结点。对人类的思想而言,一
此外,科学家知道,类似电子这样的粒子并不仅仅是一个有着表面的微小球体。事实上,它们是有着特定属性的无穷小的能量结点。对人类的思想而言,一大挑战是去想象基本粒子的真正本质——无论是一个能量点还是一根弦。
探索不同的维度
把这些弦和普通粒子及其特性相连的数学描述只有在十维的宇宙中才奏效,这让事情变得更为诡异。我们所处的普通宇宙由三维空间和一维时间构成,因此,弦理论的数学要求再增加6个额外的维度,同时,它们自身还要完全闭合且具有10-33厘米的有限大小。
拿一张二维的纸,将它紧紧地团起来。把它塞进一个乒乓球,然后把这个球压缩到直径只有10-33厘米——一些科学家认为,那6个维度就隐藏在这个物体中。在三维空间中的每一个点上重复这个过程,弦理论认为,你每这样做一次就会得到一个不同类型的宇宙。这些紧致维度的确切几何特性决定了在这个宇宙中到底会拥有什么样的粒子以及它们的特有属性。
一个三维球具有特定的几何特性,使得粒子在其表面能以特定的方式运动。类似的,通过这些紧致维度的空间来控制弦的振动(及其所对应的粒子),形成了弦的张力和几何特性。在这个紧致的空间中,每一种粒子都具有特定的由6个数字构成的地址,这就好像巴黎在地球二维表面上有其唯一的经度和纬度一样。
毫无疑问,要画出这样的一个六维实体是很困难的。就算可以,我们也会为穷尽其所有特性而疲于奔命。在弦理论中,这样的空间据估计有个,每一个都代表一个有着不同粒子和场的数学宇宙。这些空间中,有一些里面不存在电子,有一些里面则可以有12种不同的夸克,却没有光子,在这样的空间里就不会有彩虹。
且慢,不止这些
如果我们得到的只是一个有关粒子看上去是什么样子——在空间中震动的环而非点——的新模型,那我们还没有简化或者统一标准模型。要解释我们已知的事物,还需要更为复杂的数学。弦理论还具有第二个特性,即超对称。正如任何一个学过几何的学生都知道的,对称性往往会使求解问题变得更为简单。
由于立方体本身的对称性,在三维空间中每转90度就能看到它新的一面,但是立方体的形状仍保持不变。科学家称其为旋转对称性。 在20世纪70年代初,物理学家发现标准模型中的粒子也能在超对称下彼此转化。这一镜像牵涉到量子力学和粒子的一种内禀属性,被称为自旋。这个理论最吸引人的是,作为已知粒子类型间超对称转换的结果,它可以自动地包含引力——终于,有一个理论可以自然地容纳所有四种基本作用力了。
然而,大自然永远都不会无中生有,因此科学家不得不添加新的成分,使得超对称的数学描述奏效。此时,标准模型中的每一种粒子都会被赋予一个新的超伙伴粒子,这样才能使粒子间的变换在数学上可行。通过用这种方式拓展标准模型,科学家现在拥有了最小超对称标准模型(MSSM)。这个模型不仅可以解决标准模型存在的许多问题,
还为占据宇宙物质总量8 5%的神秘物质——暗物质——提供了一种新的候选粒子。标准模型无法解释这些看不见的物质,但MSSM 中质量最小的中性微子却具备了解释暗物质所需的合适特性。
一起尝试
20世纪80年代初,物理学家把超对称引入弦理论,形成了超弦理论。 他们提出了5种不同类型的超弦理论,每一种都能以各自的方式解释物理世界。之后在1995年, 物理学家意识到,这5个理论其实是一回事,他们将其称为M理论。
这些理论彼此相连的方式可以用涉及改变长度的数学运算来精确描述,即对偶变换。一个与之类似且我们也更熟悉的例子是三维立方体的二维投影。一个三维立方体的真正形状可以从其不同的二维投影中重建出来。通过在三维空间中转动立方体,其每一个二维投影面都能变换成其他的样子。你可以把十一维M 理论立方体的每一面想象成一个不同的十维超弦理论。十一维M 理论的详细数学描述告诉科学家如何在十维超弦理论间进行变换。
迄今的证据
一些物理学家把MSSM 视为在不添加大量假设的前提下超越标准模型的最简单途径,而且它还预言了世界上最强大的粒子加速器——欧洲核子中心的大型强子对撞机(LHC)——可检测的新现象。科学家正在筛查数据,搜寻已知粒子的超伙伴粒子的踪迹,其中一些最轻的质量为几万亿电子伏特,在LHC可检测的范围之内。如果科学家什么也没找到,那么他们就需要用更复杂的模型来取代MSSM,这些超伙伴粒子会具有更高的能量。那么,目前这些搜寻进展到哪一步了呢?毕竟LHC 已经工作超过2年了。
文章来源:《控制理论与应用》 网址: http://www.kzllyyyzz.cn/zonghexinwen/2021/1031/967.html